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1. Introduction. 

The SOR method (successive overrelaxation) is a standard iterative method for solving linear 

systems of equations, particularly large sparse systems arising from partial differential equations. 

Convergence of the method is greatly affected by the choice of overrelaxation parameter o. A stan- 

dard model problem for analyzing SOR is the system of equations arising from a finite difference 

discretization of Laplace's equation on a rectangle with zero boundary data. The solution of this prob- 

lem is identically zero; hence, the iterates of SOR also represent the error at each step. The conver- 

gence properties of SOR for the model problem also apply to Poisson's equation with general Dirichlet 

boundary data, since the errors will still satisfy the homogeneous equation. 

Using the five-point approximation to the Laplacian gives 

where u j k  approximates the solution u (xi&) with xi = j h  , y k  = kh , and h = 1/N. This gives a linear 

system of (N-1)2 equations in (N-1)2 unknowns. The exact form of the matrix equation, and the form 

that the SOR iteration takes, depends on the order in which the unknowns u j k  are arranged in the vec- 

tor of unknowns. Two standard orderings are the natural rowwise (NR) ordering and the Red-Black 

(RB) ordering, in which the grid is colored in a checkerboard fashion and the Red points are ordered 

before the Black points (by rows within each color). For the model problem, the optimal o and rate of 

convergence are the same for both of these orderings. This model problem was analyzed by 

Frankel[l950] and also by Young[1950] who gave a more general theory of SOR for a wide class of 

matrix equations in which the matrix is "consistently ordered. 

Another standard model problem is obtained by using the nine-point approximation to the Lapla- 

cian: 
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Again there are various ways to order the unknowns, but none of thcse leads to a consistently ordcred 

matrix and so the theory of Young does not apply. Multicolor orderings, similar to the RB ordering 

mentioned above but usually involving four colors for the nine-point stencil, are of particular interest 

for parallel processing applications. Recently Adams and Jordan[1986] have studied this problem in a 

more general context and identified 72 distinct four color orderings. These can be grouped into 

equivalence classes that are known to have the same convergence behavior. For the model problcm 

considered here, their theory reduces these to three classes of orderings that could potentially have dif- 

ferent convergence rates, although the actual rate was not determined for any class. 

In this paper, we show that in fact two of these classes are equivdent and alsc have the same 

convergence behavior as the natural rowwise ordering. The third class is shown to be distinct, with a 

different optimal o and convergence rate. In each case the eigenvectors of the iteration matrix are 

determined. The eigenvalues (which determine the convergence rate) are found in terms of the roots 

of quartic equations. The optimal w for small h is givcn by an asymptotic expansion about h = 0, and 

is based on an unproved assumption about which frequencics dominate the error decay. However, this 

approximation agrees very well with values obtained numerically for small h . 

In Section 2 we use a separation of variables technique to determine the eigenvalues and eigen- 

vectors for the NR ordering. The resulting quartic equation is used to derive the expansion for the 

optimal a. Our results for this ordering differ from those given by Garabedian[l956]. We explain 

why both results are, in a sense, correct. 

In Section 3 we discuss the various multicolor orderings. The main technique we use is a 

change of variables from n , the iteration number, to v, the "data flow time", as defined by Adams and 

Jordan[1986]. The fact that this change of variables can be used to simplify and relate various SOR 

methods was observed by LeVeque and Trefethcn[l986]. They present a simple Fourier analysis of 

SOR on the five-point stencil and show the equivalence of NR and RB using a change of variables 

motivated by Garabedian[l956] that is equivalent to the data flow times. 
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In Section 4 we analyze a pseudo-SOR method based on a Red-Black coloring for the nine-point 

stencil. Although this method has attractive features for parallel computers, we show that it is unsatis- 

factory, being an order of magnitude slower than the true SOR methods with optimal w. 

Finally, in Section 5, we briefly discuss line SOR methods and compare their convergence rates 

with the point SOR methods discussed in this paper. 

2. Analysis of the natural rowwise ordering. 

For the nine point stencil with NR ordering, the SOR method takes the form 

w u n+l = (1-0) u; + - (u;& +u;.$tu;+l&+u;&+l ) 

- 0 (~~-l,k+l+~j-l,k-l+~/?+l,k+l n+l +u j + l , k - l ) *  ?+l 

5 Jk 

20 

We assume that this iteration has a solution of the form 

Then h is an eigenvalue of the iteration matrix and the vector with components 

w(x,,yk), j,k = 1, , N-1 gives the corresponding eigenvector. Plugging (2.2) into (2.1), cancel- 

ling a common factor of h", and dropping the subscripts on x and y gives 

I 1 1 1 hw (x y ) = ho -w (x-h y )+-w (x -h y -h )+-w (x y -h )+-w (x+h y -h ) I: 20 5 20 

I 1 1 1 + 0 -w (x+h ,y )+--w (x-h ,y +h )t --w (x  y +h )+--w (x +h ,y +h ) 

+ (1- w) - w ( X , Y ) .  

[: 20 5 20 

The eigenfunction w (x  ,y ) must be zero on the boundary of the unit square in view of the given boun- 

dary conditions. 

We use separation of variables and let w ( x y )  = X ( x ) Y ( r ) .  We also set = 3cii2. Plugging this 

into (2.3) and dividing by X ( x ) Y  (r) gives 
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a2+o- 1 
0 

Now let 

1 
5 

1 
5 

- _  - 

+- 

to get 

a2+o-l 201 X ( x - h )  X ( x + h )  
a2 

@ l +  X ( x )  
= -cos q h  + 

0 5 X ( X )  

where 

1 a 
5 10 
l a  Q =  - + -COS q h  . 
5 10 

= -a2 + -cos q h  

We note that <bl and O2 are independent of x and y and let 

X ( X )  = (Q1/@2)XIUsin b. 

Then 

and using this in (2.6) gives 

Squaring (2.9), using (2.7). and rearranging terms gives a quartic equation for a: 

(2.9) 

4 2 
5 25 

a4 - [--wcosqh + -co2cos2{h coqh 1 a3 

(2.10) 
4 1 
25 25 

- [ 2(1- 01 ---02cos%lh + - ~ 2 ~ o s 2 ~ ~ ( c o s ~ h + 4 )  I a2 

+ [--w(l- w)cosqh - -m2cos2{h cosqh] a + (1- w12 = 0 4 2 
5 25 
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An eigenmode of the iteration matrix thus has the form 

(2.1 1) 

In order for the boundary conditions to be satisfied, 5 and q must be integer multiples of TC. The eigen- 

value is h= a2, where a is a root of (2.10). Note that we must choose the correct square root of 

in (2.1 1) (recall that we squared (2.9) to obtain (2.10), introducing additional solutions). The correct 

sign €or Q:12Q:1' is determined by the requirement that (2.9) be satislied, and this gives the correct 

sign for @:"I 0;'' as well. 

n: The frequencies 5 and q each range over the values R, 2x, - * * , (N-1)-. This gives a set of 

(N-1)2/4 pairs of frequencies. Corresponding to each pair (5.q) there are four roots of the quartic 

(2.10). In general these roots are distinct, and so we obtain (N-1)' eigenvalues and eigenvectors, the 

correct number. When the roots are not distinct, principal vectors will be obtained and the number of 

eigenvectors will be less than (N-1)2. Recall that for the 5-point discretization, a principal vector was 

associated with the optimal w, (see e.g. Young[l971]). We make no attempt here to determine the 

principal vectors or the values of w for which they occur. However, by continuity, we do obtain all of 

the eigenvalues. 

2 

N-1 
2 

The frequencies (-+l)n, - - * , (N-l)x, which one might expect to be included as well, give 

repeats of the eigenvectors already found. Replacing 5 by NTC-5 leaves (2.10) unchanged while 

replacing q by NR-q simply negates the coefficients of a and a3. In either case the squares of the 

roots are unchanged. The eigenmodes (2.1 1) are also unchanged by these frequency reflections. 

The convergence rate of the method (for fixed 0) is determined by the spectral radius of the 

iteralion matrix, which is 

p = max I h((,q) I .  
5.11 

To determine the optimal w, we need to minimize p over 0. 
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To help characterize the roots of (2.10), we first solved the quartic numerically for various 

values of the parameters. For example, the solid lines in Figure 2.1 (the x's will be explained later) 

show the magnitude of the four roots plotted as a function of w when ( q = n  for h=1/10, W O O ,  and 

1/1000. When w is small there are four real roots. As w increases, two of the roots become complex 

conjugates. The optimal w apparently occurs when these complex roots intersect the largest real root. 

As omega increases further, two more roots become complex conjugates and near -2 there are two 

complex conjugate pairs. The same behavior was observed for smaller values of h using various 

values of 6 and q. 

In all our experiments with various values of h , ( q = n  produced the largest root at each w and 

hence the optimal w can presumably be determined by minimizing the roots for this particular combi- 

nation of frequencies. This is consistent with what is known to be true for the five-point model prob- 

lem, but we have not been able to prove that this is correct for the nine-point stencil. 

These observations suggest a strategy for determining the optimal omega for small h when 

(q=n .  We first find the roots of (2.10) when h = 0 and then expand about these roots and equate the 

modulus of the roots to get the optimal w. As h + 0, the optimal w approaches 2. Setting h = 0 and 

o = 2 in (2.10) gives 

4 48 3 46 48 a --a + -a2- -a+ 1 = O  
25 25 25 

The roots of (2.12) are 

a,=l, a F 1 ,  a3=eie, %=eie 

where O=cos-'(-1/25). 

First. we expand the real root at wOp about al=l. We set 

a = 1 - c 1h - c 2h , 

w=2-k1h -k2h2 

and substitute into (2.10). After equating coefficients of h 2  we get 

(2.12) 

(2.13) 

(2.14a) 

(2.14b) 
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(2.15) 1 3 ~ : -  15k1cl+18n2=0, 

which determines c 1 as a function of k 

Next we expand about e ie, setting 

a = e ( 1 - ph  ) (2.16) 

and again take co of the form (2.14b). Substituting into (2.10) and equating coefficients of h gives 

which determines p as a function of k 1: 

p = .423077 k 1. (2.18) 

Recall that h= a' is the eigenvalue we seek, so we equate I a21 from (2.14a) and la21 from (2.16) to 

highest order to get 

1-2cJl  +O(h2)= 1-2ph +O(h2), 

and so c l=p. Plugging this into (2.15) and using (2.18) allows us to solve for k 

k 1 2.1 16241~. (2.19) 

Consequently, 

c 1 .89533~. (2.20) 

Using these values in (2.14a) and (2.14b), we find that the optimal w and thc corresponding spectral 

radii have approximate values 

o , , ~ ~  2 - 2.11624~h , 

popt z =: 1 - 2c lh = 1 - 1.79066nh 
(2.21) 

for small h . 

For comparison, the corresponding values for the five-point model problem are 

w 0 y = 2 - 2 x h ,  
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P$@ 1 - 2xh. 

Notice that for the nine-point stencil, the spectral radius is slightly larger, giving somewhat slower 

convergence than for the five-point stencil, although the two are very close. Most importantly, both 

are 1 - 0 (h) as h+O, giving asymptotically the same ordcr of convergence. By contrast the Jacobi 

and Gauss-Seidel methods, and also the pseudo-SOR method analyzed in Section 4, have spectral 

radius 1 - 0 (h2) as h + 0. 

It is very interesting to compare these results with asymptotic results obtained by Gara- 

bcdian[1956], especially since they do not agree and yet both are, in a sense, correct. Garabedian’s 

analysis is based on viewing the SOR iteration (2.1) as a finite difference method for a time-dependent 

PDE. Expanding in Taylor series shows that this difference equation is consistent with the PDE 

5cu, + 2u, + 3uy, = 3u, + 3% 

u = 0 on the boundary 
(2.22) 

where C and a are related by 

(2.23) 2 
1+Ch * 

a=- 

If we fix C>O and choose 61 according to (2.23) for each h>O then Ocac2 and so the method (2.1) is 

stable. Since it is consistent with the linear equation (2.22), iterates u s  with n=Tlh must converge to 

solutions u(xjyk,T) of the PDE (2.22) as h+O (by the Lax Equivalence Theorem) if we choose u$ 

by discretizing fixe(! hitid data u (x y ,Oj. Consequently, studying the decay of solutions to (2.22) 

gives information about the rate of convergence of SOR. 

By introducing the change of variables 

s = t + X + Y  
3 2  

(2.22) is transformed to 

5cu* + -u, 13 = 3u, + 3u,. 
12 

(2.24) 

(2.25) 
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1 Separation of variables shows that eigenmodes of this PDE have the form 

u (x y J) = e-PJsin sinqy (2.26) 

I 
where E, and q are integer multiples of IC and p=p (5.q) is a root of the quadratic equation 

I (2.27) 13 
12 

-p2- 5cp + 3(52+q2) = 0. 

Transforming back to the original time variable gives 

u (x  y ,t = e -P(‘ +x’3+Y’2)sin sin qy . (2.28) 
I 

Note that in a time step of length h ,  this solution decays by a factor e-Rc@)*. The eigenmode with 

slowest decay is obtained by taking 5 q - l ~  and the negative square root in solving (2.27) giving 

pmin = - 6 [5C - J25C2-261r2] 
13 

(2.29) 

If we obtain initial data for SOR by discretizing the corresponding eigenfunction, 

I uj=u  (xj,yk,O) from (2.28), it follows (by convergence) that the decay factor for the SOR iteration 

I must have the form 

= 1 -Re (pmin)h + 0 (h2)  (2.30) 

I 

~ 

as h +O. Since taking other eigenfunctions as initial data gives faster decay, one is led to the conclu- 

sion that in order to obtain the fastest possible convergence, we should maximize Re (p-) and hence 
, 

minimize Lax. Recall that the value of C is still at our disposal. We can minimize Re 0, -) by set- 

ting the radical to zero in (2.29), giving I 
1 

I (2.31) 

By (2.23) and (2.30) we obtain the following predictions for the optimal o and the corresponding 

decay rate, as in Garabedian[l956]: 

* wqt= - = 2(1-Ch) = 2 - 2.04Kh 
1+Ch 

p&=e-Pd = 1 -p-h = 1 -2.35nh. 
(2.32) 
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These values do not agree with the values (2.21) found by computing the eigenvalues of the 

iteration matrix. The reason is the following. While (2.30) does indeed give a correct expression for 

the largest eigenvalue of the iteration matrix corresponding to a decay factor for the PDE, there are 

other, spurious, eigenvalues of the discrete problem that have larger magnitude for w near 2 and hence 

determine the spectral radius p. This is seen clearly in Figure 2.1 where we have plotted leuph I for 

the two roots of the quadratic (2.27) (as +'s) along with 1 h I ,  the magnitudes of the actual eigenvalues 

obtained by solving the quartic (2.10) (as the solid lines). One pair of discrete eigenvalues closely 

matches I e - p h  I for small h while the other (complex conjugate) pair does not. In fact, Garabedian's 

results may also be obtained from our approach by choosing k l  in (2.15) to maximize c thereby 

ignoring the effect of the other root. 

For each fixed h , we can choose initial data (namely, as a spurious eigenvector) so that conver- 

gence is slow and determined by the spectral radius. On the other hand, these spurious eigenvectors 

become highly oscillatory and are not convergent as h +O. Consequently, if we obtain our initial data 

by discretizing a fixed function of x and y at each h (as is more realistic in practice), we would expect 

to see vanishingly small components of these spurious eigenvectors as h +O. For practical purposes, 

then, the values (2.32) obtained by Garabedian may be more meaningful and useful than the "me" 

values (2.21). 

This is demonstrated in Figure 2.2 where we show the decay of I I u I I2 for various initial data. 

For initial data obtained by discretizing the smooth data u (x .Y )=(x2-r >I,v *-y ), th.e &scrV& decay is 

much closer to g,x, as predicted by (2.30), than to p". 

To verify that the eigenvector corresponding to the spectral radius is highly oscillatory, we note 

that by (2.5) and (2.8) an eigenvector has the form 

At the point mqt, the maximum eigenvalue corresponds to a value of a given by (2.16). Inserting this 

in (2.33) gives 

I 
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Since 8 = cos-'(-1/25), this function will be oscillatory in k and nonconvergent as h + 0. 

By contrast, the eigenvector corresponding to the other pair of roots converges to the eigenfunc- 

tions (2.28) of the PDE as h + 0. For these vectors our previous arguments show that h has the form 

of (2.30) and hence a, the square root of h, can be expressed as 

1 
2 

a= 1 - -ph + o(h2) 

Expanding Q1/Q2 using this value of a in (2.7) shows that 

2 
3 

Q1/02 = 1 - -ph + 0 ( h 2 ) .  

Plugging (2.35) and (2.36) into (2.1 1) gives 

1 1 
2 3 

u z  = (1 - -ph + 0 (h2))%+'(1 - -ph + 0 (h7)isintjh sinqkh 

(2.35) 

(2.36) 

(2.37) 

As h + 0 with f = nh , x = j h  and y = kh fixed, this approaches the eigenrnode (2.28) of the PDE. 



1 2  

(a) h = . l  

1 .  0 

0 .  8 

0 .  0 

0 .  4 

0 .  2 

0 0 

0 .  0 0 . 5  1 . 0  1 . 5  2 . 0  

(b) h = .01 

1 . 0  

0 . 8  

0 .  6 

0 . 4  

0 . 2  

0 . 0  

0 . 0  0 . 5  1 . 0  1 . 5  2 . 0  

Figure 2.1. Solid lines show la21 = lhl for the iteration matrix with 
[ = T = ‘TI. obtained by solving the quartic (2.10). The symbols + show e+ 
where p is a root of the quadratic equation (2.27) with C = 7 = TF. 

(a) h = .I for o 6 w 4 2. 
(b) h = . 01 for 0 4 w 6 2. 
(e) h = .01 for 1.9 6 w 4 2. 
(d) h = .001 for 1.99 6 w 6 2. 



1 . 0 0  

0 . 9 5  

0 .  9 0  

0 .  8 5  

0 . 8 0  

0 . 7 5  

1 . 0 0 0  

0 .  9 0 5  

0 . 9 8 0  

0 . 9 0 5  

0 .  0 8 0  

0 . 8 7 5  

13 

( c )  h = .01 

2 .  0 0  1 .  9 0  1 .  9 2  1 . 9 4  1 .  9 6  1 . 9 8  

(d) h = ,001 
I 

? . 9 9 0  1 . 9 9 2  1 .  9 9 6  1 . 9 9 8  2 . 0 0 0  
WOPt Qopt 
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1 

10'' 

1 -7 

0 2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  

i t e r  a t  i o n  

figure 2.2. Convergence history (2-norm of error versus iteration number) for the 
NR ordering with h = 0.05 and w = 1.86. Three choices of initial data are compared: 

(a) An eigenvector corresponding to the spectral radius. 
(b) An eigenvector corresponding to the largest nonspurious eigenvalue. 
(4 uJ% = (.j" - .j)(Yi? - Yk). 

Note that the realistic initial data (e) more closely matches (b) than (a). 
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3. Multicolor SOR. 

In this section we consider the SOR method applied to the nine-point model problem with 

several alternative orderings of the unknowns u j k .  These orderings are determined by labeling the grid 

points with four different colors (Red, Black, Green and Orange) and then ordering the points by first 

listing all the points of one color, then a second color, and so on. The overall ordering of grid points is 

determined by two factors: a) the manner in which the grid points are labeled (the coloring of the grid) 

and b) the order in which the colors are taken (the ordering of the colors). 

Four-colorings are of interest for the nine-point stencil bccause with four colors it is possible to 

decouple the grid, in the sense that the resulting SOR formula for updating a grid point of any given 

color involves neighboring grid points, all of which have different colors than the center point. This is 

advantageous in parallel processing applications since all grid points of the same color can be updated 

simultaneously. 

For the five-point stencil, two colors suffice to decouple the grid using the RB checkerboard pat- 

tern discussed in Section 1. Recently LeVeque and Trefethcn[l986] have shown an easy way to 

analyze the five-point model problem using a change of variables from the iteration number, n , to the 

earliest time, v, that the unknown at a grid point can be updated assuming one update requires one time 

unit. This variable v corresponds to the “data flow times” discussed in Adams and Jordan[19861 and 

closely resembles the change of variables used by Garabedian[l956] to analyze the PDE. This change 

of variables allows the use of Fourier analysis to determine the convergence rate and optimal 0. It 

also gives a straightforward proof of the equivalence of the NR and RB orderings. 

Here we use this same approach to analyze the four-color orderings for the nine-point stencil. 

Before introducing these orderings, we briefly review the analysis for the five-point NR and RB order- 

ings io iiiZi>di;ce mtztion and motivate our nine-point analysis. 

For the five-point model problem (1.1) with the NR ordering, the SOR iteration takes the form 



16 

The stencil for updating a grid point on iteration n+l using the NR ordering is given in Figure 3.1 

n 

n+l - n n I 
I n+ 1 

Figure 3.1. NR S tencil in Variable n 

To assist in determining the change of variables, the earliest times at which an unknown can be 

updated on the first two iterations using the stencil in Figure 3.1 are listed bclow each node in Figure 

3.2. 

3.5 4.6 5 97 6 3  

Figure 3.2. Times for 2 Iterations of NR 

These times define the iteration variable v. Each node in Figure 3.2 is updated at time v+l by the sten- 

cil shown in Figure 3.3, 

V 

V 
I v -  v- 1 

i, 

Figure 3.3. NR Stencil in Variable v 

and the corresponding SOR iteration is 
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! Figure 3.2 shows that the times along lines j+k are constant and that iterations in variable n occur 

every 2 time units. Hence, the proper change of variables between (3.1) and (3.2) is 

v = 2 n  + j + k  -2. (3.3) 

The advantage of this change of variables is that the eigenmodes of (3.2) are easy to determine - 

they are simply Fourier modes of the form 

u$ = g "sinbj sinqyk. (3.4) 

These grid functions satisfy the boundary conditions provided that 6 and q are integer multiples of n, 

and substituting into (3.2) gives the following equation for g : 

g2= (1-w) + =(cogh+cosqh). 2 (3.5) 

For each 5 and q, this equation has two solutions, giving two eigenmodes. We obtain all modes by let- 

ting €, and q range over the values (, q = x ,  2n, ..., (N-1)n. for a total of 2(N-1)* modes. This is 

correct since (3.2) requires two previous levels of data to calculate UT'. 

By the change of variables (3.3). an eigenvalue h of (3.1) is seen to be g2 and the corresponding 

eigenvector has components gj+ksinbj sinqyk. We now appear to have twice as many eigenmodes 

as required for (3.1). but here each mode is repeated since replacing (5.q) by (Nn-6, N E - q )  simply 

negates the roots of (3.5). Since h = g2 this reflection leaves these eigenvalues unchanged. The eigen- 

vector is also unchanged since 

Equation (3.5) gives the famous relationship between an eigenvalue h of SOR and an eigenvalue 

1 p=z (cos&+cosqh) of Jacobi: 

Equation (3.6) can be used to determine the optimal value of w as a function of p (see e.g. 

Young[l971]) and will not be repeated here. 
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A similar analysis can be done for the Red/Black ordering of the grid points. In the variable n 1 

there are two stencils, one for the Red nodes and one for the Black ones, as given in Figure 3.4. 

n n+ 1 

n+l- h -n+l I 
I 

n-n-n 

n 
I 

n+ 1 

Red Black 

Figure 3.4. Red/Black Stencil in Variable n 

The corresponding iteration is I 

(3.7) 

1 The earliest times corresponding to Figure 3.4 are given in Figure 3.5. 

B R B R 
2.4 1,3 234 1.3 

R B R B 
1.3 294 1 3  2,4 

Figure 3.5. Times for 2 Iterations of RB I 

In the data flow variable, v, both R and B nodes have the same stencil; namely, the stencil of Figure 

3.3. Equation (3.2) gives the update formula for all nodes. Hence, (3.5) and (3.6) also hold for the 

R/B ordering. Figure 3.5 shows that the times along all lines with j+k  even are equal and similarly for 

j + k  odd and iterations in variable n occur every 2 time units in v. Therefore, the change of variables 

is 
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v=2n +(j+k)mod2-1 

and the eigenvector components of this iteration corresponding to 6,q are 

sinbjsinqyk 

hlPLsinbj sinqyk wjk = 

for the R and B nodes respectively. This agrees with that given in Young[1950]. 

We now turn to the nine-point stencil, with orderings based on four colors. The results of 

Adams and Jordan[1986] applied to this model problem show that the 72 distinct four color orderings 

can be grouped into three equivalence classes with regard to convergence behavior: 

Ordering ## 1: 

Ordering # 2  

Ordering #3: 

The grid is colored as in Figure 3.6a with ordering R/B/G/O. 

The grid is colored as in Figure 3.6b with ordering R/B/G/O. 

The grid is colored as in Figure 3.6b with ordering R/B/O/G. 

G O R B  G O G O  

R B G O  R B R  B 

G O R B  G O G O  

R B G O  R B R B  

Figure 3.6a. Figure 3.6b. 

We will show that Orderings #1 and #2 are in fact equivalent, both being equivalent to the NR 

ordering discussed in Section 2. Ordering #3 is diflercnt however, and gives slightly slower conver- 

gence based on the spectral radius and slightly faster convergence based on the eigenvalue that dom- 

inates the iteration in practice. 

Ordering #1: Figure 3.7 shows the update times b i  this crdering which define the data flow 

variable v. 
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G 0 R B 
3.7 4 3  1.5 2.6 

R B G 0 
1.5 25  3.7 4 8  

Figure 3.7. Times for two iterations with Ordering #I 

In this variable, each node has the same stencil with update formula 

The change of variables is given by 

v=4n  + e  - 3  

where c = 0, 1,2,3 for the R, B, G, and 0 nodes of Figure 3.7, respectively. 

(3.10) 

To see that this ordering is equivalent to the NR ordering, we only need to .aok at the update 

times for the NR ordering, shown in Figure 3.8. 

7,l I 8,12 9,13 10,14 

5,9 6,lO 7 , l l  8,12 

3.7 4.8 5.9 6.10 

Figure 3.8. Times for the 9 point NR Ordering 

If we define the variable v by these times, we again obtain iteration (3.9) with the change of variables 



2 1  

Vo- 

v =  [;; 
V o -  
V' 
v2 
v3 - 

- 
-V'- 
V 2  
v3 

v4 
- 4  

V =  

= 8 

If we now let V: be the vector consisting only of the values V$ for which ( j p )  is a red point, and 

similarly for V i ,  V$ and V:, then an eigenvector of the original iteration in the n variable (with Ord- 

ering # 1) has the form 
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(3.12) 

with eigenvalue h = g 4 .  

On the other hand, by the change of variables (3.1 l), an eigenvector for the NR ordering in the 

n variable has the form 

again with eigenvalue h = g '. Equation (2.1 1) gives the eigenvector for the NR ordering, 

where Ol and Q2 are given by (2.7) and a = = g ' .  Using this we obtain 

11 The eigenvectors are now determined by (3.12) with 5, q=x, 211, ..., (N-1)- As before, the frequen- 
2 '  

N-1 
2 cies 5,  q=(-+l)n, ... , (N-1)n give repeats of the eigenvalue-eigenvector pairs already found. 

Ordering #2: For Ordering #2, the associated earliest times for the first two iterations are given 

in Figure 1.9. 
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I 

G 
397 

R 
1,s 

G 
3.7 

0 
4.8 

0 
4 3  

B 
2.6 

G 0 
397 4 8  

R B 
1.5 2 6  

G 0 
3.7 4.8 

R B 
195 2 6  

Figure 3.9. R/EI/G/O Times for Ordering #2 

A quick inspection of Figure 3.9 shows that the R and G nodes have the same stencil in the variable v 

wilh the following update formula: 

Likewise, the B and 0 nodes have the same stencil with update formula: 

(3.13) 

(3.14) 

The change of variables from n to v is again given by (3.10), where c = 0.1.2, and 3 for the R, B, G, 

and 0 equations respectively. 

Now, the equations in (3.13) and (3.14) have the symmetry needed to verify that 

V$=sinbjsinqye. Thus the mehods in (3.13) a!d (3.14) have the same value for V$ but different 

amplification factors, say g and g 2. A single step of the full method, in variable n , consists of four 

sweeps, two with (3.13) and two with (3.14) and hence has amplification factor 

^h = g :g 22. (3.15) 

In order to determine h, we find a=g lg2 by considering two sweeps of the method, Red and 

Black, say. We substitute the following values, 
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(3.17) 

Next, we take a step with (3.14) to update the Black nodes, and obtain UT'. Plugging (3.16) into 

(3.14) for v+5 we get 

0 g 128; = (1-w) + - (2g~cos~h+2g~g2cosqh+g 1g;cos~hcosqh). 
5 

(3.18) w 
g fg$ = (1- 0) + - (2g l"g 2cos€,h +2g 1g 2cosqh +g 1cosSh c o q h  ) . 

5 

Equations (3.17) and (3.18) can be equated and g and g2  eliminated to give a quartic equation for a. 

Surprisingly, this quartic is again (2.10). the quartic obtained in our analysis of the NR ordering by 

separation of variables. This shows that this ordering is equivalent to the NR ordering, and hence is 

also equivalent to Ordering # 1. 

The eigenvectors in variable n can be secn from (3.10) and (3.16) to be 

- - 
VR" 

8 2vso 

1g ;voo 

= E R ( N - ~ ) ~  
8 lg SVG 

- a 

7c where Vj!=sinbjsinqyk, €,, q=x, 27c. ... , (N-1)- with eigenvalue X=g:g;. Again, we find that 
2 

eigenvalue-eigenvector pairs are repeated for the frequencies (-+l)x, ..., (lV-1)~. N-1 
2 

L 

into (3.13) to get I 

(3.16) 

(3.19) 
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Ordering #3: For this ordering, the earliest times for the first two iterations are given in Figure 

3.10. 

G 0 G 0 
4.8 3,7 4,8 3.7 

G 0 G 0 
4 3  3.7 4,8 3 97 

Figure 3.10. R/B/O/G Times for Coloring # 1 

The R and 0 nodes have the same stencil in the variable v with the following update formula: 

Likewise, the B and G nodes are updated by the formula: 

Now, substituting (3.16) into (3.20) and (3.21) yields 

20 0 
5 &2’ = ( 1 - 0 ) + 5  ( g ~ g ~ c o s q h + g ~ c o s ~ h ) +  - g~g2COsqhCOS~h 

(3.20) 

(3.21) 

(3.22) 

and 

(3.23) 20 0 
5 5 g l”g 2’ = (1- 0) + - (g 1coSqh+g l”g$OSch) + - g ~ g ~ c o s ~ h c o s q h  . 

respectively. As before, we equate (3.22) and (3.23), eliminate g and g and get the following quar- 

tic in a=grg2: 
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2 4 
5 25 a4 - (- wcosqh cos€,h + - 02coqh cos€,h ) a3 

(3.24) 
1 4 4 

25 25 25 + (-a2 cos?h cos2€,h + 2(03-1) - - 02cos%h - - 02cos2€,h) a2 

2 4 
5 25 + (- MI- o)cosqh coskh - - 02cos&cosqh) a + (o - 112 = 0. 

The change of variables from n to v is again given by (3.10) where c=O, 1,2, and 3 corresponding to 

the R, B, 0, and G equations, respectively. Following the same arguments as before, we find that the 

eigenvectors in variable n for Ordering #3 are given by 

1z where V j =  sinbjsinqyk, €,,q=n, 2x, ..., (N-1)- and eigenvalue A=g ;g;. Again, we find that 
2 

eigenvalue-eigenvector pairs are repeated for 6, q=(-+l)n, ..., ( lV-1)~.  This can be seen for the 

eigenvalues fiom (3.24) since replacing (€,,q) by (Nn-€,,Nn-q) leaves the quartic unchanged and 

replacing (6.11) by either ( N I c - ~ , ~ )  or (€,,Nn-q) negates the coefficient of the a and a3 terms. 

N-1 
2 

The quartic in (3.24) does not agree with the quartic in (2.10) and the roots do not agree in gen- 

eral. Consequently the optimal o and corresponding convergence rate are different for this ordering 

than for the other orderings considered so far. 

Numerical results show that the roots of (3.24) have the same qualitative behavior as shown in 

Figure 2.1 with 6=q=n giving the slowest decay. The optimal o again appears to occur where the two 

complex roots and the largest real mot intersect. When h = 0 and o = 2, the roots satisfy 

36 3 22 2 36 a4--a +-a - - ~ + I = o ,  
25 25 25 

(3.25) 

and are given by (2.13) where B=cos-'(-7/25). The asymptotic analysis could be performed as before 

by expanding about the roots of (3.25), but this has not been carried out. Instead we are content to find 

oqt by numerically solving (3.24) and optimizing the result. This leads to 
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(3.26) 

for small h . This R/B/O/G SOR iteration was programmed and the results of (3.26) confirmed. By 

comparing (2.21) and (3.26). we see that different evaluation orderings for the same coloring of the 

grid points can lead to different convergence rates based on the spectral radius. 

The eigenvector associated with the spectral radius is highly oscillatory as the mesh is relined 

(recall this was true for the rowwise ordering also). An analysis similar to Garabedian’s can be per- 

formed to find the convergence behavior for smooth initial data. To do this, we expand the real root of 

(3.24) at oqt about al=l  using (2.14a) and (2.14b) to get the following equation which determines c 

as a function of k 1: 

4~ 1” - 5k IC 1 + 6n2 = 0 

Choosing k to maximize c in (3.27) yields 

4 
5 

k 1 = -GK z 1.95959~ 

and 

2c 1 = z 2.44949~. 

The corresponding values of p& and oil are 

= 1 - 2.44949~h , 
W& = 2 - 1.95959~h . 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The values in (3.30) show that for smooth initial data this ordering is preferred over the rowwise order- 

ing and Orderings 1 and 2. Note that the values in (3.26), based on the true spectral radius, lead to the 

opposite conclusion. However, the results of (3.26) are valid for nonsmooth initial data. Figure 3.11 

shows the decay of I 1 u i i for various initial data. For initial data obtained by discretizing the smooth 

data u (x,y)=(x2-x)(-y2-y), the observed decay is much closer to that predicted by (3.30). than to p”. 

Another ordering of the coloring in Figure 3.6b is R/G/B/O. This leads to a quartic equivalent to 

(2.10) with 5 and q interchanged. Hence, for a square grid with stepsize h in both the x and y 
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I 

directions, mop and pop for this ordering are also given by (2.21). Any of the 24 possible orderings 

associated with Figure 3.6b or the 24 orderings of Figure 3.6a can be easily proved (Adams and Jor- 

dan[19861) to have the same eigenvalues as one of the three ordcrings (R/B/G/O, R/B/O/G, R/G/B/O) 

we have analyzed here. In addition, there is a third coloring of the grid that can be obtained by intcr- 

changing the rows and columns of Figure 3.6a. Any of the possible 24 orderings of this coloring also 

can be proved to be equivalent to one of the three we have analyzed. Hence, the 72 possible fourcolor 

orderings for this model problem can be grouped into two difercnt equivalence classes that character- 

ize the asymptotic convergence rate behavior. 
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0 2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  

i t e r  a t i  o n  

Figure 3.11. Convergence history (2-norm of error versus iteration number) for 
Ordering #3 with h = 0.05 and w = 1.86. mree choices of initial data are compared: 

(a) An eigenvector corresponding t o  the spectral radius. 
(b) An eigenvector corresponding to the largest nonspurious eigenvalue. 

ujf  = (z; - rj)(Y? - yk )*  
Note that the realistic initial data (c) more closely matches (b) than (a). 
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4. A nine-point pseudo-SOR method. 

We now consider a pseudo SOR method with the stencil in Figure 4.1, 

n- 1 

n+ 1 n+ 1 

Figure 4.1. NR Modified Stencil in Variable n 

and iteration 

w n + l  +up-l + - (U;-l.k+l+Uj-l&.-l , + l $ + l + U ~ + l $ - l )  20 

which differs from (2.1) in the last two terms. This method can be analyzed using the techniques of 

Section 3. The earliest times for two iterations corresponding to Figure 4.1 are equal to those of Figure 

3.2. That is, the iteration expressed in terms of the variable v is 

with the change of variables given by (3.3). It is interesting to note that the times in Figure 3.5 and the 

iteration in (4.2) are also obtained for a Red/EHack ordering of the grid with the Red and Black stencils 

shown in Figure 4.2. 
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t 

Red Black 

Figure 4.2. Remlack 9-pt Modified Stencil in Variable n 

Since two colors do not decouple a grid discretized with the 9-pt stencil, it is tempting to use old infor- 

mation for the Black to Black coupling as shown in Figure 4.2 to obtain a method suitable for parallel 

computers. This modification was considered by Kuo, Levy, and Musicus[l986] for a 9-pt stencil aris- 

ing from a discretization of a PDE with a cross-derivative term. They show that the convergence rate 

of SOR for their problem to be 0 ( h )  in the region where the lowest frequency dominates. We show 

by analyzing (4.2) that the use of only two colors is not sufficient for the 9-pt stencil arising from the 

Laplacian. In particular, we will show that the method converges whenever 0<0<5/3, that the optimal 

omega occurs where the lowest and highest frequencies cross, and that the rate of convergence with 

the optimal omega is approximately 3n2h for small h as opposed to 1.79xh obtained in Section 3 for 

the true SOR method with Orderings #I or #2. 

We begin by observing that uS=g"sinb,sinqyk is an eigenmde of (4.2). We substitute this 

into (4.2) to get 

(4.3) 
2 0  oj 

5 J 
g 2 = (1-0) + (cos& +cosqh) + --;cos& cosqh , 

where g is the eigenvalue of the method in (4.1) or the RedBlzck method depicted in Figure 4.2. The 

eigenvectors in variable n for the NR ordering (4.1) or the RedDlack ordering (Figure 4.2) are the 

same as the respective ones given in Section 3 for the 5-point stencil. 

Equation (4.3) can be solved for g to get 

When -1, the "pseudo Gauss-SiedeI" method has amplification factor 
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which is maximized when (=q=sc. The maximum value is easily determined from (4.5) be cos2xh. 

This is identical to the spectral radius of Gauss-Siedel for the model problem with the 5-pt stencil. The 

methods, however, differ drastically when w#l. 

To determine the optimal w, we must minimize the maximum modulus of g in (4.4). Two cases 

must be considered. First, assume the radical in (4.4) is negative. Then 

1 I g I = 0 (1-- 5 cos(h cosqh) - 1 

and for convergence, we require I g I < 1 and hence 

2 
1 
5 

O < O <  

1 - - cos(hcosqh (4.7) 

As h +O, (4.7) shows that the method is divergent for 0>5/3. Also (4.6) shows that the value of I g I 

is maximized when cos5h=-cosqh. This occurs when q=N-( (low frequency in one direction and 

high frequency in the other) and this maximum is 

(4.8) 
1 
5 

I g t i p x  = 0 (1 + - cos2xh) - 1 . 

6 
5 

Ash+O, lgl&x+ I-0-11. 

Secondly, assume the radical in (4.4) is positive. Then, the maximum value of g occurs when 

(q=n  and is 

8 w 
25 5 

g iax = - w2cos2xh + (1-0) + - cos2xh 
(4.9) 

4 w 
5 5 + - 0 cosxh 4% w2cos2nh +(l-0) + - cos2xh . 

It is interesting to note that the w that minimizes (4.9) occurs when the radical is zero, and as h+O, 

w+5/2. That is, the method is divergent for the 61 that minimizes g&x of (4.9) for the lowest fre- 

quency. Recall that the w that is optimal for SOR for consistently ordered matrices corresponds to the 
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lowest frequency. For the pseudo SOR method, the optimal w occurs where the modulus of the eigen- 

values of the two frequencies q=N- E, and q=E,=n are equal. This w is determined by equating (4.8) 

and (4.9) to get 

16w2cos2~h [; ] - - ~ o s ~ ~ h + ~ - l  - 4(0-1)~ = 0. 
25 

As h+O, w+5/3, so we look for a solution to (4.10) of the form 

Substituting (4.11) into (4.10) and equating terms yields 

and the corresponding values of the optimal w and spectral radius of (4.1) are 
I 

pvt = 1 - 3Z2h 2. 

(4.10) 

(4.1 1) 

(4.12) 

Comparing (4.12) to cos%h=1-7c2h2, the spectral radius of the pseudo Gauss Siedel method, shows 

that as h +O, this method with optimal o is only three times faster than with s l .  This is not nearly as 

good as the true SOR methods discussed in Section 3. where the decay factor is l-O(h) for the 

optimal w. 

5. Comparison of point and line methods. 

Let the system Ax=b be blocked as 
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5-pt point 

The line Jacobi method is defined as 

1 
2 

cosnh 1 - - x2h2 

and the line-SOR method as 

where ui corresponds to the nodes in row i of the grid. The spectral radius of the Jacobi method for 

the 5-pt and 9-pt stencils can easily be found by separation of variables since sinbjsinqyk is an eigen- 

vector of iteration (5.2). These results are given in Figure 5.1. 

= 1 - x2hz cosnh 5-pt line 
2-cosnh 

1 3 9-pt point -cosnh + - cos2nh = 1 - - n2h2 I :  5 5 I 'cosnh; - 1 cos2nh 

9-pt line 5 =1-x2h2 
1 - - cosnh 5 

Figure 5.1. Spectral Radius of Point and Line Jacobi Methods 

The spectral radius of the line-SOR method for the 5-pt and 9-pt stencils can now be found using 

Young's theory for block-consistently ordered matrices. That is, if p is the spectral radius of line- 

Jacobi then mop and popt for line-SOR are given by 

I 

These SOR results are summarized in Figure 5.2 below where Garabedian's results for the 9-Pt point 

methods are given in parenthesis. 
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Method 

5-pt point 

5-pt line 

9-pt point 

9-pt point 

9-pt point 

9-pt point 

9-pt line 

Ordering 

Rowwise or ReWlack 

Rowwise or Rea lack  

Ordering # 1 

Ordering #2 

Ordering #3 

Rowwise 

Rowwise or Rewlack 

Spectral Radius 

1-211h 

1-2fi11h 

1-1.7911h (1-2.3kh) 

1-1.79~h (1-2.35~h) 

1-1.6011h (1-2.4511h) 

1-1.79~h (1-2.3511h) 

1-2fi11h 

Figure 5.2. Spectral Radius for Point and Line SOR Methods 

Figure 5.2 shows that, based on the actual spectral radius, the line methods converge faster than the 

point methods for both the 5 and 9 point stencils. The 9-pt line SOR method has the same conver- 

gence rate as the 5-pt line SOR method for small h; whereas the 5-pt point SOR method with a con- 

sistent ordering can be expected to converge slightly faster than any of the 9-pt point SOR methods 

that we analyzed. However, the convergence rate that will be observed in practice with smooth initial 

data for the 9-pt point methods will be closer to Garabedian’s results. That is, we can still expect the 

9-pt line methods to converge slightly faster than the point methods, but now, the 9-pt point methods 

will converge faster than the 5-pt point method. This later fact is encouraging since the 9-point 

discretization is more accurate than the 5-point one. 

6. Conclusions. 

The SOR method with several orderings and a pseudo SOR method have been analyzed for the 

9-point Laplacian. The Fourier analysis techniques proposed by LeVeque and Trefethen[ 19861 and 

separation of variables techniques were used to determine the eigenvalues and the eigenvectors of 

these methods. 
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We examined the SOR method for the 9-pt Laplacian using the natural rowwise ordering and 

several multicolor orderings. For all these orderings, we gave a quartic equation for the square root of 

the eigenvalues as a function of the frequencies and w. The optimal o was found by solving this quar- 

tic numerically for all our orderings. This w was confirmed for some orderings by asymptotically solv- 

ing the quartic corresponding to the lowest frequency for small h . The numerical results indicate that 

the lowest frequency determines the convergence rate, but so far we have not proved this. 

Our results were confirmed by performing the SOR iteration with an initial guess corresponding 

to the eigenvector associated with the spectral radius. The observed rate of convergence matched that 

predicted by the theory to five decimal places. The SOR iteration was also performed by using a 

smooth initial guess, obtained by discretizing (x-x2)(y-y2) for various stepsizes, h . In these cases, 

the observed convergence rate more closely resembled that predicted by Garabedian. 

The results also show that different orderings of the same coloring can lead to different spectral 

radii: W/G/O and R/B/O/G for the coloring in 6b have spectral radii of 1-1.79nh and 1-1.60rrh 

respectively. For smooth initial data, these two orderings also led to different effective spectral radii 

observed in practice; namely, 1-2.35nh and 1-2.45nh. respectively. This information can be useful 

in selecting a coloring, an ordering, and appropriate initial data to use with multi-color SOR on parallel 

computers (Adams and Ortega[1982]). 

An analysis of the pseudo SOR method showed that the optimal o occurs when the high and low 

frequencies cross and that the c c r r ~ ~ ~ d i i i g  spcirai radius is only 1-3nzh2. This is inferior to both 

the 5-pt and 9-pt SOR methods we analyzed. In addition, for small h , the pseudo method only con- 

verges for 0<0<5/3. 

The 5-pt and 9-pt point and line SOR methods were compared for the model problem for small 

h .  The line methods converge slightly faster than the point methods. The 9-pt line and 5-pt line 

methods have the Same asymptotic rate of convergence, but the 5-pt point method with a consistent 

ordering was 1.12 times faster, based on the spectral radius, and 1.23 times slower, based on 

Garabedian's arguments, than the best 9-pt point method that we analyzed. Hence, for a smooth initial 
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I 

guess, the 9-pt point methods can be expected to be more accurate and converge faster than the 5-pt 

point method. 
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